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1 Introduction

Integrability has been the driving force behind the recent years’ progress in the study of

the spectral problem of the AdS5/CFT4 correspondence [1–3]. Integrability is conjectured

to hold in all sectors to all loop orders [2, 4] and impressive tests involving quantities

extrapolating from weak to strong coupling have been performed [5–8].

Recently a novel explicit example of a gauge/string duality of type AdS4/CFT3 has

emerged [9] and one could hope that integrability would play an equally important role

there. So far in the AdS4/CFT3 correspondence integrability is at a much less firm setting.

The gauge theory dilatation generator has been proved to be integrable in the scalar sector
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at leading two-loop order [10, 11] and the string theory has been proved to be classically

integrable in certain subsectors [12–14]. Investigations probing integrability at the quan-

tum level of the string theory have been carried out in various regimes such as the BMN

limit [15–17], the giant magnon regime [17, 18] and the near BMN and near flat-space

limits [19, 20]. There exist conjectures about integrability of the full AdS4/CFT3 system

in all sectors to all loops [21] and a number of tests have come out affirmative [19, 22–24]

but certain problems still seem to require resolution [24].

The spectral information only constitutes one part of the information encoded in the

gauge and string theory. Eventually, one would like to go beyond the spectral problem

and study interacting string theory respectively non-planar gauge theory. A widespread

expectation is that integrability cannot persist beyond the planar limit. In reference [2] a

way to characterize and quantify the deviation from integrability was presented for N = 4

SYM. In this case one observed at the planar level some a priori unexpected degeneracies

in anomalous dimensions between certain pairs of operators with opposite parity. These

degeneracies could be explained by the existence of an extra conserved charge and thus

eventually by the integrability of the theory. When non-planar corrections were taken into

account these degeneracies were found to disappear. Notice, however, that the degeneracies

observed at planar one-loop order persisted when planar higher loop corrections were taken

into account. This observation was in fact the seed that led to the conjecture about all

loop integrability of N = 4 SYM [2].

In the present paper we will study non-planar corrections to N = 6 superconformal

Chern-Simons-matter theory, the three-dimensional field theory entering the AdS4/CFT3

correspondence, in order to investigate whether one observes a similar lifting of spectral

degeneracies related to integrability when one goes beyond the planar level. Our investi-

gations will be carried out in the SU(2) × SU(2) sector at two-loop level and will thus not

rely on or involve any conjectures.

Using a method based on effective vertices we will derive the full two-loop dilatation

generator in this sector involving all non-planar corrections. For short operators the action

of this dilatation generator can easily be written down, resulting in a mixing matrix of

low dimension which can be diagonalized explicitly.1 Another type of operators for which

the mixing matrix can easily be written down are BMN-type operators [26] which contain

a large (infinite) number of background fields and a small (finite) number of excitations.

We will look into the nature of the BMN quantum mechanics [27] of N = 6 superconfor-

mal Chern-Simons-matter theory and will find that in the BMN scaling limit the two-loop

N = 6 theory resembles the one loop N = 4 SYM theory. Away from the scaling limit the

N = 6 dilatation generator has additional terms. The mixing problem of the BMN limit

of N = 4 SYM was never solved beyond the planar limit even perturbatively in 1
N due

to complications arising from huge degeneracies in the planar spectrum [28]. A third type

of operators one could dream of studying beyond the planar limit are operators dual to

spinning strings. Such operators typically contain M excitations and J background fields

1For N = 4 SYM, explicit diagonalization at the non-planar level for a range of operators of this type

was carried out in [2], see also [25].
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where J,M → ∞ with M
J finite. For such operators, however, acting with the dilatation

generator involves evaluating infinitely many terms and writing down the dilatation genera-

tor exactly seems intractable. In reference [29] it was suggested that non-planar corrections

to operators dual to spinning strings could be treated using a coherent state formalism.

Non-planar effects in N =6 superconformal Chern-Simons-matter theory should reflect

interactions in the dual type IIA string theory. Directly comparable quantities are, how-

ever, not immediate to write down, not least because the AdS4/CFT3 duality implies the

following relation between the string coupling constant and the gauge theory parameters [9]

gs =
λ5/4

N
. (1.1)

This should be compared to the similar relation for N = 4 SYM that took the form

gs = λ
N which at least gave the hope that interacting BMN string states could be studied by

perturbative gauge theory computations. The comparison between the perturbative non-

planar gauge theory and the interacting string theory, described in terms of light cone string

field theory on a plane wave, however, remained inconclusive. For a recent review, see [30].

It is thus primarily with the purpose of investigating the role of integrability beyond the

planar limit and the structural similarities and differences between N = 4 SYM and N = 6

superconformal Chern-Simons-matter theory that we engage into the present investigations.

We start in section 2 by giving an ultra-short summary of N = 6 superconformal

Chern-Simons-matter theory, i.e. ABJM theory. Subsequently in section 3 we derive the

full two-loop dilatation generator in the SU(2) × SU(2) sector, deferring the details to ap-

pendix A. After a short discussion of the structure of the dilatation generator in section 4

we explain in section 5 the relation between planar degeneracies and conserved charges.

Then we proceed to apply the dilatation generator to respectively short operators in sec-

tion 6 and BMN operators in section 7. Finally, section 8 contains our conclusion.

2 ABJM theory

Our notation will follow that of references [11, 31]. ABJM theory is a three-dimensional

superconformal Chern-Simons-matter theory with gauge group U(N)k × U(N)−k and R-

symmetry group SU(4). The parameter k denotes the Chern-Simons level. The fields

of ABJM theory consist of gauge fields Am and Ām, complex scalars Y I and Majorana

spinors ΨI , I ∈ {1, . . . 4}. The two gauge fields belong to the adjoint representation of the

two U(N)’s. The scalars Y I and the spinors ΨI transform in the N × N̄ representation

of the gauge group and in the fundamental and anti-fundamental representation of SU(4)

respectively. For our purposes it proves convenient to write the scalars and spinors explicitly

in terms of their SU(2) component fields, i.e. [31]

Y I = {ZA,W †A}, Y †
I = {Z†

A,WA},
ΨI = {ǫAB ξB eiπ/4, ǫAB ω†B e−iπ/4, },

ΨI† = {−ǫAB ξ†B e−iπ/4,−ǫAB ωB eiπ/4},
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where now A,B ∈ {1, 2}. Expressed in terms of these fields the action reads

S =

∫

d3x

[

k

4π
ǫmnpTr

(

Am∂nAp +
2i

3
AmAnAp

)

− k

4π
ǫmnpTr

(

Ām∂nĀp +
2i

3
ĀmĀnĀp

)

− Tr(DmZ)†DmZ − Tr(DmW )†DmW + iTrξ†D/ ξ + iTrω†D/ ω − V ferm − V bos
]

.

Here the covariant derivatives are defined as

DmZA = ∂mZA + iAmZA − iZAĀm, DmWA = ∂mWA + iĀmWA − iWAAm, (2.1)

and similarly for DmξB and DmωB. The bosonic as well as the fermionic potential can be

separated into D-terms and F-terms which read

V ferm
D =

2πi

k
Tr
[

(ξAξ†A−ω†AωA)(ZBZ†
B−W †BWB)−(ξ†AξA−ωAω†A)(Z†

BZB−WBW †B)
]

+
4πi

k
Tr
[

(ξAZ†
A−W †AωA)(ZBξ†B−ω†BWB)−(Z†

AξA−ωAW †A)(ξ†BZB−WBω†B)
]

,

V ferm
F =

2π

k
ǫACǫBD Tr

[

2ξAWBZCωD+2ξAωBZCWD+ZAωBZCωD+ξAWBξCWD

]

+
2π

k
ǫACǫBD Tr

[

2ξ†AW †BZ†
Cω†D+2ξ†Aω†BZ†

CW †D+Z†
Aω†BZ†

Cω†D+ξ†AW †Bξ†CW †D
]

,

V bos
D =

(

2π

k

)2

Tr
[(

ZAZ†
A + W †AWA

)(

ZBZ†
B − W †BWB

)(

ZCZ†
C − W †CWC

)

+
(

Z†
AZA + WAW †A

)(

Z†
BZB − WBW †B

)(

Z†
CZC − WCW †C

)

−2Z†
A

(

ZBZ†
B − W †BWB

)

ZA
(

Z†
CZC − WCW †C

)

−2W †A
(

Z†
BZB − WBW †B

)

WA

(

ZCZ†
C − W †CWC

)]

(2.2)

and

V bos
F = −

(

4π

k

)2

Tr
[

W †AZ†
BW †CWAZBWC − W †AZ†

BW †CWCZBWA

+ Z†
AW †BZ†

CZAWBZC − Z†
AW †BZ†

CZCWBZA
]

.

(2.3)

Introducing a ’t Hooft parameter for the theory

λ =
4πN

k
, (2.4)

one can consider the ’t Hooft limit

N → ∞, k → ∞, λ fixed. (2.5)

Furthermore, the theory has a double expansion in λ and 1
N . In this paper we will be inter-

ested in studying non-planar effects for anomalous dimensions at the leading two-loop level.
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(a) (b) (c) (d)

Figure 1. The four types of two-loop diagrams contributing to anomalous dimensions. For opera-

tors in the SU(2) × SU(2) sector diagrams in class (d) do not contribute.

3 The derivation of the full dilatation generator

In [10, 11] an expression for the planar dilatation generator acting on operators of the type

O = Tr(Y A1Y †
B1

Y A2Y †
B2

. . . Y ALY †
BL

), (3.1)

where Ai, Bi ∈ {1, 2} was derived and proved to be identical to the Hamiltonian of an

integrable alternating SU(4) spin chain.

Here we will restrict ourselves to considering scalar operators belonging to a SU(2) ×
SU(2) sub-sector i.e. operators of the following type

O = Tr
(

ZA1WB1
. . . ZALWBL

)

, (3.2)

and their multi-trace generalizations. For this class of operators we wish to derive the

full dilatation generator including non-planar contributions. In order to do so we employ

the method of effective vertices from reference [32]. An effective vertex is a vertex which

encodes the combinatorics of a given type of Feynman diagram. For instance, the scalar

D-terms give rise to the following effective vertex contributing to the dilatation generator

acting on operators of the type given in eq. (3.2)

(

V bos
D

)eff

= γ : Tr
[(

ZAZ†
A + W †AWA

)(

ZBZ†
B−W †BWB

)(

ZCZ†
C−W †CWC

)

+
(

Z†
AZA + WAW †A

)(

Z†
BZB−WBW †B

)(

Z†
CZC−WCW †C

)

−2Z†
A

(

ZBZ†
B−W †BWB

)

ZA
(

Z†
CZC−WCW †C

)

−2W †A
(

Z†
BZB−WBW †B

)

WA

(

ZCZ†
C−W †CWC

)]

:

(3.3)

where each daggered field is supposed to be contracted with a field inside O, the omissions

of self-contractions of the vertex being encoded in the symbol : : . All contractions of

(V bos
D )eff with the operator O multiply the same Feynman integral whose value we denote

as γ. The relevant integral is represented by the Feynman diagram in Fig 1a. The dilatation
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generator also gets contributions from the bosonic F -terms, gluon exchange (figure 1b),

fermion exchange (figure 1c) and scalar self interactions [10, 11]. Notice, however, that

for operators belonging to the SU(2) × SU(2) sector there are no contributions involving

paramagnetic interactions (figure 1d). If things work as in N = 4 SYM the contribution

from the D-terms in the sixth order scalar potential should cancel against contributions

from gluon exchange, fermion exchange and self-interactions to all orders in the genus

expansion. We show explicitly in appendix A that this is indeed the case. We thus have

that the full two-loop dilatation generator takes the form

D =: V bos
F : (3.4)

It is easy to see that the dilatation generator vanishes when acting on an operator con-

sisting of only two of the four fields from the SU(2)×SU(2) sector. Accordingly we will

denote two of the fields, say Z1 and W1, as background fields and Z2 and W2 as excita-

tions. It is likewise easy to see that operators with only one type of excitations, say W2’s,

form a closed set under dilatations. For operators with only W2 -excitations the dilatation

generator takes the form

D = −
(

4π

k

)2

: Tr
[

W †2Z†
1W

†1W2Z
1W1 − W †2Z†

1W
†1W1Z

1W2

+W †1Z†
1W

†2W1Z
1W2 − W †1Z†

1W
†2W2Z

1W1

]

:

(3.5)

In the case of two different types of excitations, i.e. both W2’s and Z2’s, the dilatation gen-

erator has 16 terms. It appears from the one in (3.5) by adding similar terms with 1 and 2

interchanged and subsequently adding the same operator with Z and W interchanged. In

both cases D is easily seen to reduce to the one of [10, 11] in the planar limit

Dplanar ≡ λ2D0 = λ2
2L
∑

k=1

(1 − Pk,k+2), (3.6)

where Pk,k+2 denotes the permutation between sites k and k + 2 and 2L denotes the total

number of fields inside an operator. As explained in [10, 11] this is the Hamiltonian of two

Heisenberg magnets living respectively on the odd and the even sites of a spin chain. The

two magnets are coupled via the constraint that the total momentum of their excitations

should vanish which is needed to ensure the cyclicity of the trace.

4 The structure of the dilatation generator

As proved in the previous section and in appendix A the two-loop dilatation generator in

the SU(2)×SU(2) sector takes the form given in eq. (2.3). When acting on a given operator

we have to perform three contractions as dictated by the three hermitian conjugate fields.

It is easy to see that by acting with the dilatation generator one can change the number

of traces in a given operator by at most two.2 More precisely, the two loop dilatation

2Acting with the dilatation generator involves performing three contractions. Performing the first of

these does not change the number of traces. Each of the subsequent contractions on the other hand can

lead to an increase or decrease of the trace number by one.

– 6 –
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generator has the expansion

D = λ2

(

D0 +
1

N
D+ +

1

N
D− +

1

N2
D00 +

1

N2
D++ +

1

N2
D−−

)

. (4.1)

Here D+ and D++ increase the number of traces by one and two respectively and D− and

D−− decrease the number of traces by one and two. Finally, D0 and D00 do not change

the number of traces. We notice that in N = 4 SYM the two-loop dilatation generator in

the SU(2) sector has a similar expansion [2] whereas the most studied, one-loop dilatation

generator involves only two contractions and does not contain any 1
N2 terms [32–35]. Let

us assume that we have found an eigenstate of the planar dilatation generator D0, i.e.

D0|O〉 = EO|O〉, (4.2)

and let us treat the terms sub-leading in 1
N as a perturbation. First, let us assume that

there are no degeneracies between n-trace states and (n + 1)-trace states in the spectrum

or that the perturbation has no matrix elements between such degenerate states. If that is

the case we can proceed by using non-degenerate quantum mechanical perturbation theory.

Clearly, the leading 1
N terms do not have any diagonal components so the energy correction

for the state |O〉 reads:

δEO =
λ2

N2

∑

K6=O

|〈O|D+ + D−|K〉|2
EO − EK

+
λ2

N2
〈O|D00|O〉. (4.3)

If there are degeneracies between n-trace states and (n + 1)-trace states we have to diago-

nalize the perturbation in the subset of degenerate states and the corrections will typically

be of order 1
N .

5 Planar parity pairs, conserved charges and integrability

In the previous sections we derived the two-loop non-planar dilatation generator for the

SU(2)×SU(2) sector and analyzed its structure. From the work of [10, 11] we know that the

planar part of the dilatation generator can be identified as the Hamiltonian for an integrable

SU(2) × SU(2) spin chain. It is then interesting to ask what happens to integrability once

non-planar corrections are taken into account. One approach to answering this question is

to consider planar parity pairs, as we will now review.

As part of their analysis of the dilatation generator of N = 4 SYM, the authors of [2]

considered its action on short scalar operators. They observed an a priori unexpected

degeneracy in the resulting spectra, between operators with the same trace structure but

opposite parity, where the latter is defined as the operation that reverses the order of

all generators within each trace (in other words, complex conjugation of the gauge group

generators) [36]. Parity commutes with the action of the dilatation generator (and is

thus a conserved quantity), therefore one expects that the various operators will organize

themselves into distinct sectors according to their (positive or negative) parity. Positive

and negative parity sectors do not mix with each other and there is no reason to expect

any relation between their spectra.

– 7 –
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However, in [2] it was observed that every time there exist operators, which have the

same trace structure and belong to the same global SO(6) representation but have opposite

parity, their planar anomalous dimensions turn out to be equal. This degeneracy could

be very simply understood as a consequence of parity symmetry and planar integrability:

Recall that one of the hallmarks of integrability is the existence of a tower of commuting

conserved charges Qn (the hamiltonian Q2 being just one of them). For the N = 4

SYM spin chain there exists such a charge Q3 which (being conserved) commutes with the

dilatation generator but anticommutes with the operation of parity. This clearly implies

the existence of pairs of operators with opposite parity and equal anomalous dimension

at the planar level. Thus planar integrability manifests itself in the spectrum of short

operators through the appearance of degeneracies between planar parity pairs. Moving

beyond planar level, it was observed in [2] that all these degeneracies are lifted: There

is no apparent relation between the different parity sectors in the spectrum of the non-

planar dilatation generator. This was taken as an indication (though by no means a proof)

that integrability is lost once one considers non-planar corrections. In this connection, it

is worth noticing that the degeneracies observed at planar one-loop order remain when

planar higher loop corrections are taken into account [2].

Returning to N = 6 ABJM theory, it is interesting to ask whether the same pattern of

planar degeneracies which are lifted at the non-planar level arises in the present context.

We begin by defining a parity operation which inverts the order of all generators within

each trace, for example:

Tr [Z1W1Z1W2Z2W1] −→ Tr [W1Z2W2Z1W1Z1] = Tr [Z1W1Z1W1Z2W2] . (5.1)

Obviously, the Hamiltonian of the SU(2)× SU(2) spin chain is parity symmetric. Further-

more, from the work of [10, 11] we know that the conserved charges of the SU(2) × SU(2)

spin chain are nothing but the sum of the charges of the two SU(2) Heisenberg spin chains.

In particular, the third charge Q3 again anti-commutes with parity while commuting with

the Hamiltonian.

Hence we conclude that we should expect to see parity pairs in the planar part of the

spectrum. Furthermore, the intuition gained from N = 4 SYM points to these degeneracies

being broken once non-planar corrections are taken into account. In the following section,

by explicitly considering the action of the dilatation generator on a series of short operators,

we will see that both these expectations are confirmed.

6 Short operators

In this section we determine non-planar corrections to a number of short operators. This is

done by explicitly computing and diagonalizing the mixing matrix (aided by GPL Maxima

as well as Mathematica).

6.1 Operators with only one type of excitation

Operators with only one type of excitation can, at the planar level, be described in terms of

just a single Heisenberg spin chain and behave at the leading two-loop level very similarly to

– 8 –
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their N = 4 SYM cousins at one-loop level. Notice, however, that once one goes beyond the

planar limit the dilatation generator has novel 1
N2 terms. The simplest set of operators for

which one observes degenerate parity pairs as well as non-trivial mixing between operators

with different number of traces consists of operators of length 14 with three excitations.

There are in total 17 such non-protected operators. Notice that due to the absence of

the trace condition of N = 4 SYM, for which the gauge group is SU(N), there are more

operators here than the naive generalizations of the N = 4 SYM ones. Among the non-

protected operators there are only 8 which are not descendants and which we list below.

(To improve readability we suppress the background Z1 fields.) Notice that only O1, O3

and O6 have analogues in N = 4 SYM.

O1 =Tr([W1W1,W1W2]W1W2W2)

O2 =Tr(W1)Tr(W1[W1,W2]W1W2W2)

O3 =2Tr(W1W1W1W1W2W2W2) − 3Tr(W1W2W2W1W1W1W2)

− 3Tr(W1W2W1W1W1W2W2) + 2Tr(W1W2W1W2W1W1W2)

+ 2Tr(W1W1W2W1W1W2W2)

O4 =4(2+
√

5)Tr(W2)Tr(W1W1W1W2W1W2)−2(1+
√

5)Tr(W2)Tr(W1W1W1W1W2W2)

− 2(3+
√

5)Tr(W2)Tr(W1W1W2W1W1W2)+(3+
√

5)Tr(W1)Tr(W1W1W2W1W2W2)

+ (3+
√

5)Tr(W1)Tr(W1W2W1W1W2W2)−2Tr(W1)Tr(W1W1W1W2W2W2)

−2(2+
√

5)Tr(W1)(W2W1W2W1W2W1)

O5 =− 4(2−
√

5)Tr(W2)Tr(W1W1W1W2W1W2)+2(1−
√

5)Tr(W2)Tr(W1W1W1W1W2W2)

+2(3−
√

5)Tr(W2)Tr(W1W1W2W1W1W2)−(3−
√

5)Tr((W1)Tr(W1W1W2W1W2W2)

−(3−
√

5)Tr(W1)Tr(W1W2W1W1W2W2) + 2Tr(W1)Tr(W1W1W1W2W2W2)

+ 2(2−
√

5)Tr(W1)Tr(W2W1W2W1W2W1)

O6 =Tr(W1W1)Tr(W1[W2,W1]W2W2) + Tr(W1W2)Tr(W1W1[W1,W2]W2)

O7 =Tr(W1)Tr(W1)Tr(W1[W2,W1]W2W2) + Tr(W2)Tr(W1)Tr(W1W1[W1,W2]W2)

O8 =Tr(W2)Tr(W1W1)Tr(W1[W2,W1]W2) + Tr(W1)Tr(W1W2)Tr(W1[W1,W2]W2)

(6.1)

The associated planar anomalous dimensions (in units of λ2), trace structure and parity

are collected in table 1, where by parity for multi-trace operators we mean the product

of the parity of its single trace components. The planar anomalous dimensions of O1, O3

and O6 agree (as they should) with those of the similar operators in N = 4 SYM, cf. [2].

We have one pair of degenerate single trace operators with opposite parity, namely the

operators O1 and O3.
3

3We also observe a degeneracy between the negative parity double trace state O2 and the positive parity

triple trace state O8 as well as a degeneracy between the double trace state O6 and the triple trace state

O7 both of positive parity. However, states with different numbers of traces can not be connected via the

conserved charge Q3.
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Eigenvector Eigenvalue Trace structure Parity

O1 5 (14) −
O2 6 (2)(12) −
O3 5 (14) +

O4 5 +
√

5 (2)(12) +

O5 5 −
√

5 (2)(12) +

O6 4 (4)(10) +

O7 4 (2)(2)(10) +

O8 6 (2)(4)(8) +

Table 1. Non-descendant operators of length 14 with 3 W2 excitations.

Expressing the dilatation generator in the basis above and taking into account all

non-planar corrections we get































5 + 15
N2 0 0 0 0 0 0 0

6
N2 6 + 24

N2 0 0 0 0 0 0

0 0 5 + 35
N2 0 0 − 8

N − 4
N2 − 2

N2

0 0 −
√

5
N

√
5 + 5 +

(5
√

5+35)
N2

3
√

5−5
N2

1
N2 0 2

N

0 0 −
√

5
N −5+3

√
5

N2 5 −
√

5 − 5
√

5−35
N2 − 1

N2 0 − 2
N

0 0 −20
N

4
√

5+20
N2 −20−4

√
5

N2 4 + 28
N2 0 0

0 0 − 10
N2

4
√

5+20
N

4
√

5−20
N 0 4 + 32

N2 − 2
N2

0 0 − 10
N2

24
√

5+40
N

24
√

5−40
N

8
N − 9

N2 6 + 40
N2































(6.2)

Notice the decoupling of positive and negative parity states and the presence of numerous
1

N2 -terms which do not have analogues in one-loop N = 4 SYM. One observes that the

states O1 and O2 are exact eigenstates of the full dilatation operator with non-planar

corrections equal to

δE1 =
15

N2
, δE2 =

24

N2
. (6.3)

For the remaining operators we observe that all matrix elements between degenerate states

vanish. Thus the leading non-planar corrections to the anomalous dimensions can be found

using second order non-degenerate perturbation theory. The results read

δE3 =
195

N2
, δE4 = − 45 + 27

√
5

N2
,

δE5 =
105 − 37

√
5

N2
, δE6 = − 132

N2
, (6.4)

δE7 =
32

N2
, δE8 = − 200

N2
.

We observe that all degeneracies found at the planar level get lifted when non-planar

corrections are taken into account. This in particular holds for the degeneracies between

the members of the planar parity pair (O1,O3). Notice that whereas the planar eigenvalues
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Eigenvector Eigenvalue Trace Structure Parity

O1 8 (8) −
O2 4 (8) −
O3 8 (4)(4) −
O4 6 (2)(6) −
O5 8 (2)(2)(4) −
O6 4 (8) +

O7 6 (2)(6) +

Table 2. Non-descendant operators of length 8 with 1 Z2 and 1 W2 excitation.

of the operators O1, O3 and O6 are identical to those of their N = 4 SYM cousins the

non-planar corrections are not.

6.2 Operators with two types of excitations

An operator with two excitations of different type corresponds in spin chain language to the

situation where each of the two coupled spin chains has one excitation. Such an operator

does not immediately have an analogue in N = 4 SYM. (One can indeed consider scalar

N = 4 SYM operators with two types of excitations Φ and Ψ on a background of Z

fields but these operators should be organized into representations of SO(6), and not of

SU(2)×SU(2) as here, and thus always come in symmetrized or antisymmetrized versions.)

6.2.1 Length 8 with 2 excitations

Let us analyze the simplest multiplet of operators with two excitations of different types

that exhibit some of the above mentioned non-trivial features of the 1
N -expansion, operators

of length eight with one excitation of each type. There are in total 7 such non-protected

operators. The planar non-protected eigenstates of the two-loop dilatation generator read

O1 =Tr(Z1W1{Z1W2, Z2W1}Z1W1) − Tr(W1Z1{W1Z2,W2Z1}W1Z1)

O2 = − Tr(Z1W1[Z1W2, Z2W1]Z1W1) + Tr(W1Z1[W1Z2,W2Z1]W1Z1)

O3 =Tr(Z1W1Z1W1) [Tr(Z1W2Z2W1) − Tr(W1Z2W2Z1)]

O4 =Tr(W1Z1) [Tr(W1Z1W2Z2W1Z1) − Tr(Z1W1Z2W2Z1W1)]

O5 =Tr(W1Z1)Tr(W1Z1) [Tr(W2Z1W1Z2) − Tr(Z2W1Z1W2)]

O6 = − Tr(Z1W1[Z1W2, Z2W1]Z1W1) − Tr(W1Z1[W1Z2,W2Z1]W1Z1)

O7 = − Tr(W1Z1) [Tr(W1Z1[W1Z2,W2Z1]) + Tr(Z1W1[Z1W2, Z2W1])]

(6.5)

and the associated planar anomalous dimensions (in units of λ2), trace structure and parity

can be found in table 2. Notice that we have two pairs of degenerate operators with opposite

parity, namely the single trace operators O2 and O6 and the double trace operators O4

and O7.
4

4The double trace operators O4 and O7 can be related via Q3 when letting Q3 act only on the longer of

the two constituent traces of the operators.
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Expressing the dilatation generator in the basis given above and taking into account

all non-planar corrections we get
























8 8
N2

16
N

4
N − 8

N2 0 0
8

N2 4 − 12
N2 0 − 2

N − 4
N2 0 0

16
N − 8

N 8 0 0 0 0

0 −16
N − 8

N2 6 − 8
N2 −12

N 0 0

0 8 0 −12
N 8 − 8

N2 0 0

0 0 0 0 0 4 + 4
N2

2
N

0 0 0 0 0 8
N 6 + 8

N2

























(6.6)

The non-planar corrections for O6 and O7 can be found exactly and read

δE6,7 =
6

N2
∓
(

√

1 +
20

N2
+

4

N4
− 1

)

. (6.7)

The corrections to the eigenvalues of the remaining operators we instead find using pertur-

bation theory as described in section 4. First we notice that most matrix elements between

degenerate states vanish. The only exception are the matrix elements between the states

O1 and O3. To find the non-planar correction to the energy of these states we diagonalize

the Hamiltonian in the corresponding subspace and find

δE1,3 = ∓ 16

N
. (6.8)

For the remaining operators the leading non-planar corrections to the energy can be found

using second order non-degenerate perturbation theory. The results read

δE2 = − 28

N2
, δE4 = − 64

N2
, δE5 =

64

N2
. (6.9)

We again notice that all degeneracies observed at the planar level get lifted when non-

planar corrections are taken into account. This in particular holds for the degeneracies

between the members of the two parity pairs.

6.2.2 Length 8 with 3 excitations

We now consider operators with three excitations, one of type Z2 and two of type W2.

Among this type of operators one finds 7 which are descendants of the 7 operators con-

sidered in the previous section. Of highest weight states one has the following four

planar eigenstates

O1 =Tr(Z1W2) [Tr(Z1W1Z2W2Z1W1) − Tr(W1Z1W2Z2W1Z1)]

− Tr(Z1W1) [Tr(Z1W1Z2W2Z1W2) − Tr(Z1W2Z2W1Z1W2)]

O2 =Tr(Z1W1[Z2W1, Z1W2]Z1W2) + Tr(Z1W2[Z1W2, Z2W1]Z1W1)

+ Tr(Z1W1[Z1W1, Z2W2]Z1W2) + Tr(Z1W2[Z2W2, Z1W1]Z1W1)

O3 = − Tr(W2Z1[W1Z1,W1Z2]W2Z1) + Tr(W1Z1[W2Z2,W2Z1]W1Z1)

O4 =Tr(Z1W2) [Tr(W1Z1[W1Z2,W2Z1]) + Tr(Z1W1[Z1W2, Z2W1])]

+ Tr(Z1W1) [Tr(Z1W2[Z1W1, Z2W2]) + Tr(W2Z1[W2Z2,W1Z1])]

(6.10)

– 12 –



J
H
E
P
0
3
(
2
0
0
9
)
0
3
7

Eigenvector Eigenvalue Trace Structure Parity

O1 6 (2)(6) −
O2 6 (8) +

O3 6 (8) +

O4 6 (2)(6) +

Table 3. Non-descendant operators of length 8 with 1 Z2 and 2 W2 excitations.

Their planar anomalous dimensions (in units of λ2), trace structure and parity are tabulated

in table 3.

We observe one planar parity pair with trace structure (2)(6). The full mixing matrix

for this set of states takes the following form











6 − 16
N2 0 0 0

0 6 + 12
N2 0 0

0 0 6 − 4
N2 −12

N

0 0 − 4
N 6











(6.11)

and the exact non-planar corrections to the energy are

δE1 = − 16

N2
, δE2 =

12

N2
,

δE3,4 = ±
√

12

N2
− 1

N4
− 2

N2
. (6.12)

Also in this case it turns out that all planar degeneracies are lifted. Obviously, there is

another three-excitation sector with one W2-excitation and two Z2-excitations. The results

for this sector can of course easily be read off from those of the present one.

6.2.3 Length 8 with 4 excitations

Let us turn to the case of operators of length eight with two excitations of type W2 and

two excitations of type Z2. In this sector we find seven operators which descend from the

operators treated in section 6.2.1 as well as eight operators which descend from operators

with three excitations. The remaining non-protected operators are

O1 = −Tr(Z1W1Z1W1Z2W2Z2W2) + Tr(W1Z1W1Z1W2Z2W2Z2)

+Tr(W2Z1W2Z1W1Z2W1Z2) − Tr(W1Z2W1Z1W2Z1W2Z2)

O2 = Tr(W1Z2) [Tr(Z1W2Z1W1Z2W2) − Tr(W1Z1W2Z1W2Z2)]

+Tr(Z2W2) [Tr(Z1W1Z1W2Z2W1) − Tr(W2Z1W1Z1W1Z2)]

+Tr(Z1W2) [Tr(Z1W1Z2W1Z2W2) − Tr(W1Z2W1Z1W2Z2)]

+Tr(W1Z1) [Tr(W1Z1W2Z2W2Z2) − Tr(W2Z1W1Z2W2Z2)]

O3 = Tr(W1Z1)Tr(Z2W2) [Tr(W1Z1W2Z2) − Tr(W2Z1W1Z2)]

+Tr(W1Z2)Tr(Z1W2) [Tr(Z1W1Z2W2) − Tr(W1Z1W2Z2)]
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Eigenvector Eigenvalue Trace Structure Parity

O1 4 (8) −
O2 6 (2)(6) −
O3 8 (2)(2)(4) −
O4 12 (8) +

O5 6 (2)(6) +

O6 16 (4)(4) +

Table 4. Non-descendant operators of length 8 with 2 Z2 and 2 W2 excitations.

O4 = Tr(Z1W1{Z1W1, Z2W2}Z2W2) + Tr(Z2W1{Z2W1, Z1W2}Z1W2)

+Tr(W1Z1{W1Z1,W2Z2}W2Z2) + Tr(W2Z1{W2Z1,W1Z2}W1Z2)

−2Tr(W1Z1{W1Z2,W2Z1}W2Z2) − 2Tr(Z1W1{Z1W2, Z2W1}Z2W2)

O5 = −Tr(Z2W2) [Tr([W2Z1,W1Z1]W1Z2) + Tr([Z1W1, Z1W2]Z2W1)]

−Tr(W1Z2) [Tr([Z1W2, Z1W1]Z2W2) + Tr([W1Z1,W2Z1]W2Z2)]

−Tr(Z1W2) [Tr([Z1W1, Z2W1]Z2W2) + Tr([W1Z2,W1Z1]W2Z2)]

−Tr(Z1W1) [Tr([Z1W2, Z2W2]Z2W1) + Tr([W2Z1,W1Z2]W2Z2)]

O6 = 2Tr(W1Z1W2Z2)Tr(Z1W1Z2W2) − Tr(W2Z1W1Z2)Tr(Z1W1Z2W2)

−Tr(W1Z1W2Z2)Tr(W1Z1W2Z2) (6.13)

with planar eigenvalues (in units of λ2), trace structure and parity exhibited in table 4.

We notice one planar parity pair with trace structure (2)(6). In the subspace of negative

parity operators the dilatation operator reads







4 − 12
N2

12
N

12
N2

12
N 6 6

N
8

N2

24
N 8 − 8

N2






(6.14)

Using second order non-degenerate perturbation theory we find the following corrections

to the eigenvalues

δE1 = − 84

N2
, δE2 =

6

N2
, δE3 =

64

N2
. (6.15)

The mixing matrix in the subspace of positive parity eigenvalues looks as follows







12 − 12
N2 −12

N − 8
N

0 6 − 8
N2

−72
N 0 16






(6.16)

Second order non-degenerate perturbation theory then gives

δE4 = −154

N2
, δE5 = 0, δE6 =

144

N2
. (6.17)

Again we see that all planar degeneracies are lifted.
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Summarizing, in all sectors considered we have observed a degeneracy between opera-

tors with similar trace structure but opposite parity — a degeneracy which, as explained

earlier, could be attributed to the existence of an extra conserved charge and thus to the

integrability of the planar dilatation generator. The lift of degeneracies can be taken as an

indication (but not a proof) that integrability breaks down beyond the planar level. In any

case the concept of integrability when formulated in terms of spin chains and their associ-

ated conserved charges has to be reformulated when multi-trace operators are taken into

account but it is clear that some symmetries are lost when we go beyond the planar limit.

7 BMN operators

In the previous section we analyzed the case of short operators in ABJM theory. Another

important class of operators that played a crucial role in the context of the AdS5/CFT4

correspondence is that of the so-called BMN operators [26]. It is not difficult to see that

BMN operators of ABJM theory can be constructed analogously to BMN operators of

N = 4 SYM [26].

In this section we compute non-planar corrections to the anomalous dimensions of

BMN-type operators in the SU(2)×SU(2) sector of ABJM theory [15–17]. We will restrict

ourselves to considering BMN operators with two excitations. There are two types of

such operators:5

AJ0,J1,...,Jk

l = Tr
[

Z2 (W1Z1)
l W2 (Z1W1)

J0−l
]

Tr
[

(Z1W1)
J1

]

. . . Tr
[

(Z1W1)
Jk

]

, (7.1)

BJ0,J1,...,Jk

l = Tr
[

(Z1W1)
l Z1W2 (Z1W1)

J0−l Z1W2

]

Tr
[

(Z1W1)
J1

]

. . . Tr
[

(Z1W1)
Jk

]

.

(7.2)

There are in total J0 + 1 independent operators of type A and [J0/2] + 1 independent

operators of type B. The associated bare conformal dimensions are

∆A = J0 + · · · + Jk + 1, ∆B = J0 + · · · + Jk + 2. (7.3)

In the spin chain language the B-operators have two excitations on the same spin chain

whereas the A-operators have one excitation on each spin chain. As already mentioned,

the A-operators do not have an analogue in the scalar sector of N = 4 SYM6 where

operators have to organize into representations of SO(6) (and not into representations of

SU(2) × SU(2) as here). In N = 4 SYM two-excitation operators always appear in a

symmetrized or anti-symmetrized version.

We wish to study the non-planar corrections to both types of operators. As in N = 4

SYM we find the set of two-excitation operators above are closed under the action of the

dilatation generator, i.e. two-excitation operators with the two excitations in two different

5As pointed out in [10], these operators resemble scalar operators in the orbifolds of N = 4 SYM theory

in four dimensions. Non-planar corrections for operators in the orbifolded N = 4 SYM theory have been

computed in [37, 38].
6This was first pointed out in [19] from the analysis of the dual string theory state.
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traces are never generated when the dilatation generator acts. In the next two sub-sections

we consider separately the two sets of operators AJ0,J1,...,Jk

l and BJ0,J1,...,Jk

l .

Introducing J = J0 + J1 + · · · + Jk we define the BMN limit as the double scaling

limit [33, 34]

J →∞, N →∞, λ′ ≡λ2

J2
, g2 =

J2

N
, fixed. (7.4)

The BMN limit of the N = 6 superconformal Chern-Simons-matter theory is expected to

correspond to the Penrose limit of the type IIA string theory on AdS4 × CP 3. The string

theory states dual to the BMN operators AJ0,J1,...,Jk

l and BJ0,J1,...,Jk

l have been studied

in [17, 19]. Notice, however, that due to different dispersion relations of excitations in the

spin chain and string theory language [17] the correct definition of λ′ at leading order in a

strong coupling expansion is λ′ = λ/J2 [16, 17].

7.1 BMN operators with only one type of excitation

For operators with only one type of excitation the dilatation generator is given by the

expression in eq. (3.5). Using the notation of eq. (4.1) we find

D0 ◦ BJ0,J1,...,Jk
p = −2

(

δp 6=J0
BJ0,J1,...,Jk

p+1 + δp 6=0BJ0,J1,...,Jk

p−1 − (δp 6=0 + δp 6=J0
)BJ0,J1,...,Jk

p

)

,

(7.5)

D+ ◦ BJ0,J1,...,Jk
p = −4





p−1
∑

Jk+1=1

(

BJ0−Jk+1,J1,...,Jk,Jk+1

p−Jk+1−1 − BJ0−Jk+1,J1,...,Jk,Jk+1

p−Jk+1

)

−
J0−p−1
∑

Jk+1=1

(

BJ0−Jk+1,J1,...,Jk,Jk+1
p − BJ0−Jk+1,J1,...,Jk,Jk+1

p+1

)



 (7.6)

and

D− ◦ BJ0,J1,...,Jk
p = −4

[

k
∑

i=1

Ji

(

BJ0+Ji,J1,...,×Ji,...,Jk

Ji+p−1 − BJ0+Ji,J1,...,×Ji,...,Jk

Ji+p

−BJ0+Ji,J1,...,×Ji,...,Jk
p + BJ0+Ji,J1,...,×Ji,...,Jk

p+1

)

]

. (7.7)

The terms resulting from the action of D++, D−− and D00 are rather involved and we have

deferred them to appendix B.

We notice that the form of D0, D+ and D− are exactly as for N = 4 SYM at one loop

order, written down in the same notation in [2], except for the fact that D+ and D− in the

present case have an additional factor of 2 compared to D0. Thus for this type of operators

the analysis up to order 1
N can be directly carried over from [2]. At order 1

N2 one has to take

into account the novel terms D00, D++ and D−− appearing in appendix B.1. However, as

explained there once one imposes the BMN limit defined in eq. (7.4) these terms become

sub-dominant. The BMN quantum mechanics is therefore (up to trivial factors of two)

identical to that of N = 4 SYM at one loop level. In particular one encounters the same

problem that the huge degeneracies make the perturbative treatment of the non-planar

corrections intractable.
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7.2 BMN operators with two different types of excitations

For operators with two different types of excitations the dilatation generator is given by the

expression (3.5) where we add the similar terms with 1 replaced by 2 and subsequently add

the same operator with Z and W interchanged. Thus, in this case the dilatation generator

consists of 16 terms. Using the notation of eq. (4.1) we find

D0 ◦ AJ0,J1,...,Jk
p = −2

(

δp 6=J0
AJ0,J1,...,Jk

p+1 + δp 6=0AJ0,J1,...,Jk

p−1 − (δp 6=J0
+ δp 6=0)AJ0,J1,...,Jk

p

)

,

(7.8)

D+ ◦ AJ0,J1,...,Jk
p = −



4

p−1
∑

Jk+1=1

(

AJ0−Jk+1,J1,...,Jk,Jk+1

p−Jk+1−1 −AJ0−Jk+1,J1,...,Jk,Jk+1

p−Jk+1

)

−4

J0−p−1
∑

Jk+1=1

(

AJ0−Jk+1,J1,...,Jk,Jk+1
p −AJ0−Jk+1,J1,...,Jk,Jk+1

p+1

)

+2δp 6=0

(

Ap,J1,...,Jk,J0−p
0 −Ap,J1,...,Jk,J0−p

p

)

+2δp 6=J0

(

AJ0−p,J1,...,Jk,p
J0−p −AJ0−p,J1,...,Jk,p

0

)

]

(7.9)

and

D− ◦ AJ0,J1,...,Jk
p = −4

k
∑

i=1

Ji

[

(AJ0+Ji,J1,...,×Ji,...,Jk

Ji+p−1 −AJ0+Ji,J1,...,×Ji,...,Jk

Ji+p )

− (AJ0+Ji,J1,...,×Ji,...,Jk
p −AJ0+Ji,J1,...,×Ji,...,Jk

p+1 )
]

. (7.10)

The contributions arising from the action of D++, D−− and D00 can be found in appendix

B. Formally D0, D+ and D− are similar to the ones one obtains when applying the one-loop

dilatation generator of N = 4 SYM to an operator containing two different excitations (i.e.

Ψ and Φ in a background of Z’s). The only differences are that the quantities D+ and D−
in the present case have an additional factor of 2 compared to D0 and that there appear two

Kronecker δ’s in D+. However, as already mentioned, in N = 4 SYM operators with two

excitations of different types have to organize into representations of SO(6) and therefore

always come in a symmetrized or anti-symmetrized form. For symmetrized operators, the

last line of eq. (7.10) vanishes. Taking the BMN limit we observe as before that the terms

D++, D−− and D00 become sub-dominant, cf. appendix B.2.

8 Conclusion

We have derived and studied the full two-loop dilatation generator in the SU(2) × SU(2)

sector of N = 6 superconformal Chern-Simons-matter theory. As opposed to what was

the case at leading order in N = 4 SYM theory, the leading order dilatation generator

of ABJM theory implies a mixing not only between n and (n + 1) trace states but also

between n and (n + 2) trace states. The latter mixing becomes sub-dominant when the

BMN limit is considered.

By acting with the dilatation generator on short operators we observed at the planar

level pairs of degenerate operators belonging to the same representation but having opposite
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parity. As in planar N = 4 SYM these degenerate parity pairs could be explained by

the existence of an extra conserved charge, the first of the tower of conserved charges

of the alternating SU(2) × SU(2) spin chain. When non-planar corrections were taken

into account these degeneracies disappeared indicating (but not proving) the breakdown

of integrability. It would of course be interesting to investigate the mixing problem for

higher representations of SU(2)×SU(2) than the ones considered here to see if other types

of symmetries will reveal themselves. It is clear, however, that once one allows for mixing

between operators with different number of traces one needs to re-think the entire concept

of integrability. The simple spin chain picture breaks down and the concept of local charges

becomes inadequate. In fact, it would be interesting to try to construct a toy example of

what one could call an integrable model involving splitting and joining of traces, perhaps

along the lines of the simple solvable toy model of reference [29] which describes the splitting

and joining of N = 4 SYM operators dual to the folded Frolov-Tseytlin string [39].

Another interesting and important line of investigation would be to explicitly relate

non-planar contributions in the N = 6 superconformal Chern-Simons-matter theory to

observables in the dual type IIA string theory.
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A Derivation of the non-planar dilatation generator

Here we derive explicitly the full two-loop dilatation generator in the SU(2)×SU(2) sector

using the method of effective vertices explained in section 3. As already mentioned the

scalar D-terms give rise to the following effective vertex

(

V bos
D

)eff

= γ : Tr
[(

ZAZ†
A + W †AWA

)(

ZBZ†
B−W †BWB

)(

ZCZ†
C−W †CWC

)

+
(

Z†
AZA + WAW †A

)(

Z†
BZB−WBW †B

)(

Z†
CZC−WCW †C

)

− 2Z†
A

(

ZBZ†
B−W †BWB

)

ZA
(

Z†
CZC−WCW †C

)

− 2W †A
(

Z†
BZB−WBW †B

)

WA

(

ZCZ†
C−W †CWC

)]

:

(A.1)

where : : means that self-contractions should be omitted. For the subsequent considera-

tions, it is useful to notice that the following operator gives a vanishing contribution when
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applied to operators of the type appearing in eq. (3.2)

V = γ

{

Tr
[(

ZAZ†
A + W †AWA

)(

ZBZ†
B − W †BWB

)(

ZCZ†
C − W †CWC

)

+
(

Z†
AZA + WAW †A

)(

Z†
BZB − WBW †B

)(

Z†
CZC − WCW †C

)

−2Z†
A

(

ZBZ†
B − W †BWB

)

ZA
(

Z†
CZC − WCW †C

)

−2W †A
(

Z†
BZB − WBW †B

)

WA

(

ZCZ†
C − W †CWC

) ]

−
[

NTr
(

Z†
BZBZ†

CZC
)

− NTr
(

ZBZ†
BZCZ†

C

)

+NTr
(

W †BWBW †CWC

)

− NTr
(

WBW †BWCW †C
)

+2NTr
(

ZBZ†
BW †CWC

)

+ 2NTr
(

WBW †BZ†
CZC

)

+2Tr
(

ZBZ†
B

)

Tr
(

ZCZ†
C

)

+ 2Tr
(

W †BWB

)

Tr
(

W †CWC

)

−2Tr
(

ZBZ†
C

)

Tr
(

ZCZ†
B

)

− 2Tr
(

W †BWC

)

Tr
(

W †CWB

)

−4Tr
(

ZBWC

)

Tr
(

Z†
BW †C

)]

}

. (A.2)

This can be seen as follows. If we contract Z†
C and W †

C in the factors
(

ZCZ†
C − W †CWC

)

in the first four lines with W ’s and Z’s inside the operator O we get zero. If we contract

the same Z†
C and W †

C with fields inside the vertex itself we get minus the remaining lines.

Notice that there is no normal ordering in the vertex V .

We can rewrite the above effective vertex (A.1) in the following way
(

V bos
D

)eff

= γ
{

Tr
[(

ZAZ†
A + W †AWA

)(

ZBZ†
B − W †BWB

)(

ZCZ†
C − W †CWC

)

+
(

Z†
AZA + WAW †A

)(

Z†
BZB − WBW †B

)(

Z†
CZC − WCW †C

)

− 2Z†
A

(

ZBZ†
B − W †BWB

)

ZA
(

Z†
CZC − WCW †C

)

− 2W †A
(

Z†
BZB − WBW †B

)

WA

(

ZCZ†
C − W †CWC

) ]

− :
[

3NTr
(

ZBZ†
BZCZ†

C

)

+ 3NTr
(

Z†
BZBZ†

CZC
)

+ 3NTr
(

WBW †BWCW †C
)

+ 3NTr
(

W †BWBW †CWC

)

− 2NTr
(

ZBZ†
BW †CWC

)

− 2NTr
(

WBW †BZ†
CZC

)

− 2Tr
(

ZBZ†
B

)

Tr
(

ZCZ†
C

)

− 2Tr
(

W †BWB

)

Tr
(

W †CWC

)

+ 12Tr
(

ZBZ†
B

)

Tr
(

W †CWC

)

− 4Tr
(

ZBZ†
C

)

Tr
(

ZCZ†
B

)

− 4Tr
(

W †BWC

)

Tr
(

W †CWB

)

−8Tr
(

ZBWC

)

Tr
(

Z†
BW †C

)]

:

− :
[

18(N2 − 1)Tr
(

ZCZ†
C

)

+ 18(N2 − 1)Tr
(

W †CWC

)]

:

−24N2(N2 − 1)
}

.

(A.3)
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To this effective vertex we must add the effective vertices corresponding to the gluon

exchange (figure 1b), fermion exchange (figure 1c) and scalar self-interactions. What we

will get if the “usual” cancellation takes place is the vertex V . We can rewrite the above

vertex without normal ordering as follows

(

V bos
D

)eff

= sextic terms + quartic terms

+18(N2 − 1)
{

Tr
(

ZCZ†
C

)

+ Tr
(

W †CWC

)}

−24N2(N2 − 1). (A.4)

Let us continue with the fermion exchange, cf. fig 1c. It is easy to see that the term

V ferm
F does not contribute to the anomalous dimension of operators of the type (3.2): A

diagram like the one in figure 1c requires two fermionic vertices with respectively a daggered

and an undaggered scalar field. Such vertices do not appear in V ferm
F . Furthermore, the

first line in V ferm
D can be shown not to give any contribution. What remains is an effective

vertex which looks like

(V ferm)eff = α :
{

NTr
(

ZBZ†
BZCZ†

C

)

+ NTr
(

Z†
BZBZ†

CZC
)

+ NTr
(

WBW †BWCW †C
)

+ NTr
(

W †BWBW †CWC

)

+ 4Tr
(

ZBZ†
B

)

Tr
(

W †CWC

)

− 2Tr
(

ZBZ†
C

)

Tr
(

ZCZ†
B

)

− 2Tr
(

W †BWC

)

Tr
(

W †CWB

)

−4Tr
(

ZBWC

)

Tr
(

Z†
BW †C

)}

:

= α { quartic terms

− 16(N2 − 1)
[

Tr
(

ZCZ†
C

)

+ Tr
(

W †CWC

)]

+ 32N2(N2 − 1)
}

,

(A.5)

where α is a coefficient which is to be determined by Feynman diagram computations and

where quartic terms means the quartic terms from before without normal ordering.

Gluon exchange, cf. fig 1b gives another contribution to the anomalous dimension of

the operators in question. The associated effective vertex reads

(V gluon)eff = β :
{

NTr
(

ZBZ†
BZCZ†

C

)

+ NTr
(

Z†
BZBZ†

CZC
)

+NTr
(

WBW †BWCW †C
)

+ NTr
(

W †BWBW †CWC

)

+2NTr
(

ZBZ†
BW †

CW C
)

+ 2NTr
(

Z†
BZBW CW †

C

)

+2Tr
(

ZBZ†
B

)

Tr
(

ZCZ†
C

)

+ 2Tr
(

W †BWB

)

Tr
(

W †CWC

)

+4Tr
(

ZBZ†
B

)

Tr
(

W †CWC

)

−4Tr
(

ZBZ†
C

)

Tr
(

ZCZ†
B

)

− 4Tr
(

W †BWC

)

Tr
(

W †CWB

)

−8Tr
(

ZBWC

)

Tr
(

Z†
BW †C

)}

:
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= β { quartic terms

−28(N2 − 1)
[

Tr
(

ZCZ†
C

)

+ Tr
(

W †CWC

)]

+56N2(N2 − 1)
}

, (A.6)

where β is a coefficient which likewise is to be determined by Feynman diagram compu-

tations.

Noticing that the scalar self-interactions can never give a contribution to the effective

vertex which mixes different indices inside the same trace we find that in order that the

expected cancellation takes place we need that

α = γ − 2β. (A.7)

Inserting this we find

(V bos
D )eff + (V ferm)eff + (V gluon)eff − V =

(β + 3γ)N
{

Tr
(

ZBZ†
B

(

W †CWC − ZCZ†
C

))

+ Tr
(

WBW †B
(

Z†
CZC − WCW †C

))}

+(β + γ)N
{

Tr
(

Z†
BZB

(

WCW †C − Z†
CZC

))

+ Tr
(

W †BWB

(

ZCZ†
C − W †CWC

))}

+(2β + 4γ)Tr
(

ZBZ†
B − W †BWB

)

Tr
(

ZCZ†
C − W †CWC

)

+(4β + 2γ)(N2 − 1)
{

Tr
(

ZCZ†
C

)

+ Tr
(

W †CWC

)}

+ (8γ − 8β)N2(N2 − 1). (A.8)

As already exploited, terms containing factors of the type
(

Z†
CZC − WCW †C

)

only give a

non-vanishing contribution when Z†
C and W †C are contracted with fields inside the vertex

itself. Therefore, we have

(V bos
D )eff + (V ferm)eff + (V gluon)eff − V

= (2β − 2γ)(N2 − 1) :
{

Tr
(

Z†
CZC

)

+ Tr
(

WCW †C)
}

: (A.9)

This exactly has the form expected for scalar self-interactions. Now we have to determine

the coefficients and check that everything fits. From reference [11] we can read off the

values of γ and β. They are

γ =
1

4

λ2

N2
, β = −1

8

λ2

N2
. (A.10)

This means that we need that

α =
1

2

λ2

N2
, (A.11)

which can easily be verified using reference [11]. Finally we find for the pre-factor in

eq. (A.9)

(2β − 2γ)(N2 − 1) = −3

4
λ2

(

1 − 1

N2

)

. (A.12)

This is exactly equal to minus the pre-factor of the scalar self-energies. The planar part

can again be read off directly from [11], while to verify the term subleading in N2 we

performed a closer analysis of the non-planar versions of the self-energy diagrams. Thus,

we have shown that the full one-loop dilatation generator in the SU(2) × SU(2) sector is

indeed given only by the F -terms in the bosonic potential.
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B Subleading contributions for BMN states

B.1 Operators with only one type of excitation

Below we present the contributions to DBJ0,J1,...,Jk
p which are of order 1

N2 , cf. eq.(4.1). As
mentioned in the main text none of these terms survive in the BMN limit. As the terms are
multiplied by λ2

N2 they need to be of the order J2 to contribute in the limit. However, the
maximum order of any term is J . All terms involve operators in a combination which turns
into a first derivative in the BMN limit and which is thus of order 1

J . At the same time
any term can at maximum contain two sums (arising via the second and third contraction)
each giving a factor of J .

D++ ◦ BJ0,J1,...,Jk

p = (−2) ×




p−Jk+1−2
∑

Jk+2=1

p−2
∑

Jk+1=1

(

BJ0−Jk+1−Jk+2−1,J1,...,Jk,Jk+1,Jk+2

p−Jk+1−Jk+2−2
− BJ0−Jk+1−Jk+2−1,J1,...,Jk,Jk+1,Jk+2

p−Jk+1−Jk+2−1

)

+

J0−p−Jk+1−2
∑

Jk+2=1

J0−p−2
∑

Jk+1=1

(

BJ0−Jk+1−Jk+2−1,J1,...,Jk,Jk+1,Jk+2

p − BJ0−Jk+1−Jk+2−1,J1,...,Jk,Jk+1,Jk+2

p+1

)



 ,

(B.1)

D−− ◦ BJ0,J1,...,Jk
p =

−2

[ k
∑

i=1

Ji

k
∑

j 6=i

Jj

(

BJ0+Ji+Jj ,J1,...,×Ji,...,×Jj,...,Jk

Ji+Jj+p−1 − BJ0+Ji+Jj ,J1,...,×Ji,...,×Jj,...,Jk

Ji+Jj+p

− BJ0+Ji+Jj ,J1,...,×Ji,...,×Jj ,...,Jk
p + BJ0+Ji+Jj ,J1,...,×Ji,...,×Jj ,...,Jk

p+1

)]

,

(B.2)

D00 ◦ BJ0,J1,...,Jk
p = (B.3)

−



2

J0−1
∑

p=0

(

BJ0,J1,...,Jk
p − BJ0,J1,...,Jk

p+1

)

+ p(p + 1)
(

BJ0,J1,...,Jk

p−1 − BJ0,J1,...,Jk
p

)

+ (J0 − p)(J0 − p + 1)
(

BJ0,J1,...,Jk

p+1 −BJ0,J1,...,Jk
p

)

+

p−1
∑

l=0

(

BJ0,J1,...,Jk

p−l−1 − BJ0,J1,...,Jk

p−l

)

+

J0−p−1
∑

l=0

(

BJ0,J1,...,Jk

p+l+1 − BJ0,J1,...,Jk

p+l

)

+

J0−l−1
∑

s=0

(

p−1
∑

l=0

+

J0−p−1
∑

l=0

)

(

BJ0,J1,...,Jk

l+s+1 − BJ0,J1,...,Jk

l+s

)

+

J0−l−2
∑

s=0

(

p−1
∑

l=0

+

J0−p−1
∑

l=0

)

(

BJ0,J1,...,Jk
s − BJ0,J1,...,Jk

s+1

)

+
k
∑

i=1

Ji

(

J0−p−1
∑

l=0

+

J0−p−2
∑

l=0

)

(

BJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1
p+1 − BJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1

p

)

+

k
∑

i=1

Ji

(

Bp+Ji,J1,...,×Ji,...,Jk,J0−p
p+1 − Bp+Ji,J1,...,×Ji,...,Jk,J0−p

p

)

+

k
∑

i=1

Ji

(

BJ0−p+Ji,J1,...,×Ji,...,Jk,p
J0−p+1 − BJ0−p+Ji,J1,...,×Ji,...,Jk,p

J0−p

)
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+ 2

k
∑

i=1

Ji

J0+Ji−p−2
∑

l=0

(

BJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1
p+1 − BJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1

p

)

+

k
∑

i=1

Ji

(

p−1
∑

l=0

+

p−2
∑

l=0

)

(

BJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1
p+Ji−l−2 − BJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1

p+Ji−l−1

)

+ 2
k
∑

i=1

Ji

p+Ji−2
∑

l=0

(

BJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1
p+Ji−l−2 − BJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1

p+Ji−l−1

)

]

.

B.2 Operators with two different types of excitations

Below we present the 1
N2 -contributions to DAJ0,J1,...,Jk

p , cf. eq.(4.1). As in the case of the
B-operators and for the same reason none of these terms survive in the BMN limit, cf.
appendix (B.1).

D++ ◦ AJ0,J1,...,Jk

p =

−2





p−Jk+1−2
∑

Jk+2=1

p−2
∑

Jk+1=1

(

AJ0−Jk+1−Jk+2−1,J1,...,Jk,Jk+1,Jk+2

p−Jk+1−Jk+2−2
−AJ0−Jk+1−Jk+2−1,J1,...,Jk,Jk+1,Jk+2

p−Jk+1−Jk+2−1

)

−
J0−p−Jk+1−2

∑

Jk+2=1

J0−p−2
∑

Jk+1=1

(

AJ0−Jk+1−Jk+2−1,J1,...,Jk,Jk+1,Jk+2

p −AJ0−Jk+1−Jk+2−1,J1,...,Jk,Jk+1,Jk+2

p+1

)

+

p−1
∑

Jk+1=1

(

Ap−Jk+1,J1,...,Jk,Jk+1,J0−p

0 −Ap−Jk+1,J1,...,Jk,Jk+1,J0−p

p−Jk+1

)

+

J0−p−1
∑

Jk+1=1

(

AJ0−p−Jk+1,J1,...,Jk,Jk+1,p

J0−p−Jk+1
−AJ0−p−Jk+1,J1,...,Jk,Jk+1,p

0

)



 , (B.4)

D−− ◦ AJ0,J1,...,Jk
p =

−2

k
∑

i=1

Ji

k
∑

j 6=i

Jj

[

AJ0+Ji+Jj ,J1,...,×Ji,...,×Jj ,...,Jk

Ji+Jj+p−1 −AJ0+Ji+Jj,J1,...,×Ji,...,×Jj,...,Jk

Ji+Jj+p

− AJ0+Ji+Jj ,J1,...,×Ji,...,×Jj ,...,Jk
p + AJ0+Ji+Jj ,J1,...,×Ji,...,×Jj,...,Jk

p+1

]

,

(B.5)

D00 ◦ AJ0,J1,...,Jk
p = −

[

p(p − 1)
(

AJ0,J1,...,Jk

p−1 −AJ0,J1,...,Jk
p

)

+ (J0 − p)(J0 − p − 1)
(

AJ0,J1,...,Jk

p+1 −AJ0,J1,...,Jk
p

)

+ 2p
(

AJ0,J1,...,Jk

J0
−AJ0,J1,...,Jk

J0−1

)

+ 2(J0 − p)
(

AJ0,J1,...,Jk

J0−p−1 −AJ0,J1,...,Jk

J0−p

)

+ 2
(

AJ0,J1,...,Jk

J0
−AJ0,J1,...,Jk

0

)

(p δp 6=0 + (J0 − p)δp 6=J0
)

+

p−1
∑

l=0

J0−l−2
∑

s=0

(

AJ0,J1,...,Jk

J0−s−1 −AJ0,J1,...,Jk

J0−s−2

)

+

p−1
∑

l=0

J0−p−l−1
∑

s=0

(

AJ0,J1,...,Jk

p−l+s −AJ0,J1,...,Jk

p−l+s−1

)

+

J0−p−1
∑

l=0

J0−l−2
∑

s=0

(

AJ0,J1,...,Jk
s −AJ0,J1,...,Jk

s+1 + AJ0,J1,...,Jk

J0−l−s−2 −AJ0,J1,...,Jk

J0−l−s−1

)

+ 2

k
∑

i=1

Ji

p−2
∑

l=0

(

AJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1
p+Ji−l−2 −AJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1

p+Ji−l−1

)
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+ 2

k
∑

i=1

Ji

J0−p−2
∑

l=0

(

AJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1
p+1 −AJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1

p

)

+ 2
k
∑

i=1

Ji

J0−p+Ji−2
∑

l=0

(

AJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1
p+1 −AJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1

p

)

+ 2

k
∑

i=1

Ji

p+Ji−2
∑

l=0

(

AJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1
p+Ji−l−2 −AJ0+Ji−l−1,J1,...,×Ji,...,Jk,l+1

p+Ji−l−1

)

+ 2
k
∑

i=1

Ji

(

Ap+Ji,J1,...,×Ji,...,Jk,J0−p
0 −Ap+Ji,J1,...,×Ji,...,Jk,J0−p

p+Ji

+ AJ0−p+Ji,J1,...,×Ji,...,Jk,p
J0−p+Ji

−AJ0−p+Ji,J1,...,×Ji,...,Jk,p
0

)]

. (B.6)
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